PriorWeightsDust

class beast.physicsmodel.prior_weights_dust.PriorWeightsDust(av_vals, av_model, rv_vals, rv_model, fA_vals, fA_model)[source]

Bases: object

Compute the priors as weights given the input grid

Initialize with basic information

Methods Summary

get_av_weight(av)

Get the weight for one A(V)

get_fA_weight(fA)

Get the weight for one f_A

get_rv_weight(rv)

Get the weight for one R(V)

get_weight(av, rv, fA)

Get the weight for one point in A(V), R(V), f_A space

set_av_weights([model])

Weights on A(V) based on input model choice

set_fA_weights([model])

Weights on f_A based on input model choice

set_rv_weights([model])

Weights on R(V) based on input model choice

Methods Documentation

get_av_weight(av)[source]

Get the weight for one A(V)

Parameters
av: float

A(V) of point

Returns
weight: float

weight fo the point

get_fA_weight(fA)[source]

Get the weight for one f_A

Parameters
fA: float

f_A of point

Returns
weight: float

weight fo the point

get_rv_weight(rv)[source]

Get the weight for one R(V)

Parameters
rv: float

R(V) of point

Returns
weight: float

weight fo the point

get_weight(av, rv, fA)[source]

Get the weight for one point in A(V), R(V), f_A space

Parameters
av: float

A(V) of point

rv: float

R(V) of point

fA: float

f_A of point

Returns
weight: float

weight fo the point

set_av_weights(model={'name': 'flat'})[source]

Weights on A(V) based on input model choice

Parameters
model: dict

Choice of model type [default=flat] flat = flat prior on linear A(V) lognormal = lognormal prior on linear A(V) two_lognormal = two lognormal prior on linear A(V) exponential = exponential prior on linear A(V)

set_fA_weights(model={'name': 'flat'})[source]

Weights on f_A based on input model choice

Parameters
model: dict

Choice of model type [default=flat] flat = flat prior on linear f_A lognormal = lognormal prior on linear f_A two_lognormal = two lognormal prior on linear f_A

set_rv_weights(model={'name': 'flat'})[source]

Weights on R(V) based on input model choice

Parameters
model: dict

Choice of model type [default=flat] flat = flat prior on linear R(V) lognormal = lognormal prior on linear R(V) two_lognormal = two lognormal prior on linear R(V)